For the remaining eight substances there are available in the literature a fair number of early values, mostly obtained around 1890 , and a few really modern results. The early values ${ }^{13}$ include determinations on all eight substances by Stohmann and his collaborators and a few results by Luginin and by Berthelot. Today it is practically impossible to translate these early data over to our modern standards. As published, they tend to run higher than our present results by amounts ranging up to 1.4%.

Coming to the modern data, where it is possible to put the heats of combustion on a better comparative basis with our new values, we find that Beckers' ${ }^{14}$ results for cetyl alcohol and anthracene differ from ours by only -0.05 and $+0.02 \%$, respectively, the values of Verkade and Coops ${ }^{15}$ for phthalic acid and phthalic anhydride exceed ours by 0.02 and 0.51%, and that of Swietoslawski ${ }^{15}$ for phthalic anhydride is 0.04% above our result. In the case of stilbene Roth's value ${ }^{13}$ exceeds the present result by 0.17%, that of Berner ${ }^{16}$ by 0.07%. For phenanthrene other recent values ${ }^{17}$ differ from that given here by -0.06 and
(13) Landolt-Börnstein-Roth-Scheel, "Tabellen," Julius Springer, Berlin, 1923, p. 1587.
(14) Beckers, Bull. soc. chim. Belg., 40, 518 (1931).
(15) Verkade and Coops, Rec. tray. chim., 47, 606 (1928).
(16) Berner, Arch. Math. Naturvidenskab, 39, No. 6 (1926).
(17) Milone and Rossignoli, Gazz. chim. ital., 62, 644 (1932);

Fries, Walter and Schilling, Ann, 516, 248 (1985).
$+0.45 \%$, and correspondingly for anthracene by +0.03 and $+0.17 \%$. For triphenylbenzene Professor Huffman at the California Institute of Technology has kindly made a pair of determinations on our original material with his own calorimetric apparatus. His mean result is 0.02% above that reported in this paper.

Acknowledgment.-Before concluding, we wish to thank Professor H. M. Huffman for his valuable advice and aid so generously given on many occasions during this investigation. We also desire to acknowledge our indebtedness to Mr. George E. Moore for purifying the samples of n-hexadecane and cetyl alcohol and making several of the combustions on these materials.

Summary

1. A bomb calorimeter has been calibrated and then used for precise measurements of the heats of combustion of the following eleven substances at 25° and constant volume: β-methylnaphthalene, phthalic anhydride, phthalic acid, anthracene, phenanthrene, stilbene, pyrene, n hexadecane, cetyl alcohol, triphenylbenzene and polyisobutylene.
2. From these experimental results the corresponding heats of combustion and heats of formation at constant pressure have been calculated.
Stanford Ūniversity, Calif.
Received September 12, 1939
[Contribution from the Chemical and Physical Laboratories, Armour Institute of Technology]

Raman Spectra of Acetylenes. II. Displacements and Depolarization Factors for Phenylacetylene and Derivatives of the Type $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CR}^{1}$

By M. J. Murray and Forrest F. Cleveland

As was indicated in the first paper of this series ${ }^{2}$ (subsequently referred to as I) the line near $2200 \mathrm{~cm} .^{-1}$ in disubstituted acetylenes is not single, but is split into two or more parts. To explain this doubling, Gredy ${ }^{3}$ postulates the co-existence of two molecular forms each of which gives its own characteristic frequency. Kohlrausch, Pongratz and Seka ${ }^{4}$ give some support to this hypothesis by the statement that more than one
(1) Much of the experimentel work discussed in tlis paper was carried out at Lynchburg College.
(2) M. J. Murray and Forrest F. Cleveland, This Journad, 60, 2664 (1938).
(3) Blanche Gredy, Theses, Paris, 1935.
(4) K. W. F. Kohlrausch, A. Pongratz and R. Seka, Sitzber. Akad Wiss. Wien., Abt. IIb, 146, 218 (1937).
frequency, if only one molecular form is present, is difficult to understand. Badger ${ }^{5}$ attributes the splitting to a Fermi resonance interaction between the fundamental in this region and an overtone of a frequency near 750 or $1100 \mathrm{~cm} .^{-1}$, the latter of which should not appear in the Raman spectra. Glockler and Davis ${ }^{6}$ accounted for the two lines in dimethylacetylene by supposing that one is due to a symmetrical, the other to an asymmetrical, vibration. If this is true for disubstituted acetylenes in general, the two frequencies in this region should have strikingly

[^0]different depolarization factors. The present investigation was designed to test this point with a number of available derivatives of phenylacetylene.

Experimental Procedure

The method used in determining the depolarization factors has been described elsewhere. ${ }^{7}$ Since the spectra of phenylacetylene derivatives are more intense than those of the compounds therein measured, it was possible to decrease the slit width (thus giving better resolution) and to reduce to ninety minutes the time for each exposure.

The Raman frequencies of several of these compounds were reported in I. ${ }^{2}$ Since in the present investigation a superior filter ${ }^{8}$ and a spectrograph ${ }^{7}$ having better optical parts and greater dispersion were used, it has been possible to obtain some of the frequencies with a greater degree of certainty than before. This remark applies especially to the frequencies near $3000 \mathrm{~cm} .^{-1}$. Much of the improvement in this region, however, is due also to the use of a different photographic emulsion (Agfa Super Plenachrome Press) which was more sensitive to the green wave lengths. Since the acetylenic compounds used undergo photochemical decomposition rapidly when exposed to light of short wave length and since the filter used was exceedingly efficient in isolating $\mathrm{Hg} 4358 \AA$., it was necessary and desirable to use only this frequency for excitation. For example, with this filter the strongest line in the spectra (the $2200 \mathrm{~cm} .^{-1}$ line) did not appear on the spectrograms as excited by Hg $4047 \AA$. Furthermore, all the mercury lines near $5000 \AA$. were completely eliminated by the filter except $\mathrm{Hg} 4916 \AA$. and $\mathrm{Hg} 4960 \AA$. which were severely weakened, the latter being observable with great difficulty on long exposures.

In certain cases, noted in the data, the material available was insufficient to fill the Raman tube, and it was necessary to add carbon tetrachloride. Experience proved that this had no observable effect upon the spectra. In a few instances where a carbon tetrachloride line chanced to coincide with one of the lines of the acetylenic compound, it was impossible to read the depolarization factor.

Results

In the tabulation of results the displacement in $\mathrm{cm} .^{-1}$ is written first, followed by the estimated intensity in parentheses, which in turn is followed by the depolarization factor, except in cases where low intensity or other cause prevented its measurement. Lines which are unusually broad are designated by the letter b following the intensity notation. Data in regard to which there is some uncertainty are enclosed in brackets. Frequencies which were observed both as Stokes and antiStokes lines are designated by the sign \pm. In the case of those compounds studied in $I,{ }^{2}$ the present
(7) Forrest F. Cleveland and M. J. Murray, J. Chem. Phys., 7. 396 (1939).
(8) J. T. Edsall and E. B. Wilson, Jr., ibid., 6, 124 (1938). The present authors have approximately doubled the strength recommended.
tabulation includes those frequencies for which depolarization factors have now been obtained, frequencies which have been redetermined with greater precision, and some frequencies not previously observed. Each new or revised value is indicated by an asterisk. The present estimated intensities are regarded as somewhat more reliable than those reported in I. ${ }^{2}$ Because of improvements in technique given above which greatly facilitate measurement in the $3000 \mathrm{~cm} .^{-1}$ region, the present values of frequencies above $2800 \mathrm{~cm} .^{-1}$ should replace in entirety those given in $\mathrm{I} .{ }^{2}$

1. Phenylacetylene $\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{C} \equiv \mathrm{CH}\right)$.-Synthesized from bromostyrene, ${ }^{9}$ b. p. 142°; previous data, Bourguel, ${ }^{10}$ and Bourguel and Daure. ${ }^{11}$
$\Delta \nu= \pm 164(6) .9 ; \quad \pm 353(4) .9 ; \quad \pm 465(3)<.7 ; \quad 517(2) ;$ $\pm 530(3) .9 ; 621(4 \mathrm{~b}) .9 ; 760(5) .5 ; 1001(7) .2 ; 1027(2)<.6$; 1155(2); 1176(4).5; 1196(6).4; 1230(1); 1281(1); 1337(1); [1380(1)]; 1447(1); 1489(2b); 1601(9).8; 2113(10).6; 3066(8).5; 3142(1); 3288(3).
2. 1-Phenylpropyne-1 $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCH}_{3}\right)$.-Synthesized by action of dimethyl sulfate on sodium phenylacetydide in ether solution, b. p. $72-73^{\circ}$ (15 mm .); previous data, Gredy, ${ }^{12}$ Bourguel, ${ }^{10}$ and Bourguel and Daure. ${ }^{11}$
$\Delta \nu=149(2) ; 298(3) .8 ; 388(4) .7$; 401(2); 510(1); $528(3) .9 ; 626(3) ; 701(3) ; 758(2) ; 953(1) ; 971(6) .3 ; 1001(7)$.3; $1030(2) ; 1053(1 / 2) ; 1160(4)$ and $1181(4)<.5 ; 1245(1)$; $1262(8) .3$; $1286(2)$; $1328(1)$; $1382(4 \mathrm{~b}) .9 ; 1436(3)$ and $1450(3) .7 ; 1489(4)$ and $1500(4) .7$; 1601(9).7; 2214(9).6; $2231(4)$; 2246(10) and $2262(6) .6 ; 2913(4)$ and $2930(3) .4$; 2955(1); 3066(4b).6;3111(1); 3143(1).

2231 was measured on three different spectrograms, but only when the camera lens was diaphragmed to 1.0 cm . did 2246 and 2262 appear resolved.
3. 1-Chloro-2-phenylethyne $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCl}\right)$.-Synthesized by action of p-toluenesulfonyl chloride on sodium phenylacetylide, b. p. 73° (16 mm .); previous data, Bourguel and Daure. ${ }^{11}$ Carbon tetrachloride added.
$\Delta \nu=284(4) ; 334(3) ; 364(5) .9 ; 500(2) ; 521(4) ; 619(3)$; $654(1) ; 754(2) ; 882(4) ; 1000(8) .3 ; 1161(3) ; 1175(3)$; 1208(1); 1224(2); 1248(6).4; 1487(2); 1599(8).7; 2203(2); $2222(10) .6$; $3065(3)$ and $3079(2)<.8$.
4. 3-Chloro-1-phenylpropyne-1 $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{Cl}\right)$.Carbon tetrachloride added; for previous data, see $I^{2}{ }^{2}$
$\Delta \nu=690(6 \mathrm{~b}) .5 ; 718(4) .9 ; \quad 980(7) .4 ; \quad 1006(2)<.9$; $1159(3)$ and $1174(3) .8 ; 1251(8) .5 ; 1491(4)<.9 ; 1600(9) .8$; $2214(10)$ and $2231(10) .7$; 2263(4).7; 2956(3).6; 3064(5).6.
5. 3-Phenyl-2-propynol-1 $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH}\right)$--For previous data, see I. ${ }^{2}$
$\Delta \nu= \pm 188(4 \mathrm{~b}) .9 ; \pm 270(3)$ and $282(3) .9 ; 366(3)$ and $382(5) .6 ; 530(5) .7$; $573(4) .9 ; 625(5) .7$; 713*(4).7; 756* (5).8; $956(6) .3 ; \pm 1000(8) .2 ; 1023^{*}(4)$ and $1038^{*}(2) .3$; $1158^{*}(4) .9 ; 1179(5) .6 ; 1258(7) .4 ; 1447^{*}(4 \mathrm{~b}) .7 ; 1490^{*}(5) .6$; 1603(9).7; 2202(6).6; 2242(10).7; 2278*(2); 2300*(2); $2433^{*}(1) ; 2510^{*}(1) ; 2555^{*}(2) ; 2868^{*}(4)<.6 ; 2914^{*}(5)$ and 2935*(4).5; 3061(7).5.

[^1]6. 3-Bromo-1-phenylpropyne-1 $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{Br}\right)$.Carbon tetrachloride added; for previous data, see I. ${ }^{2}$
$\Delta \nu=609(6 \mathrm{~b}) .6 ; 987(6) .4 ; 1206(5) \cdot 6 ; 1269(3) .8 ; 1599$ (8). 7 ; 2226(10).6; 2265(4).6; 2950*(3)<.6; 3064(5) 4 .
7. 1-Phenylbutyne-1 $\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{3}\right)$,-Synthesized by action of sodium phenylacetylide on ethyl p toluenesulfonate, b. p. $83^{\circ}(9 \mathrm{~mm}$) ; for previous data, see Gredy. ${ }^{12}$
$\Delta \nu=180(2 \mathrm{~b}) .8 ; 383(3) .7 ; 528(2)$ and $539(3) .7 ; 624(2) .9$; 694(1).9;757(2).9; 893(3)<.6; 999(8).3; 1016(2); 1069(1); $1161(3) .7$; 1184(4).6; $1240(2)$ and $1258(6) .5 ; 1330(1) .9$; 1384(1).8; 1438(1b).8; 1493(2).7; 1599(8).8; 2206(4).7; $2238(10) .7 ; 2839(1)<.7 ; 2914(3) .6 ; 2931(3)[.3] ; 2978(1 \mathrm{~b})$ 9; 3061(5).6.

A few of Gredy's assignments appear open to some question: $470 \mathrm{e}(\mathrm{e}=\mathrm{Hg} 4358 \AA$. $)$ is probably $2238 \mathrm{k}(\mathrm{k}=\mathrm{Hg}$ $4047 \AA$ A.). ${ }^{13} 942 \mathrm{e}$, reported as a strong line by Gredy, appeared with small intensity and is likely 999 f ($\mathrm{f}=\mathrm{Hg}$ $4347 \AA$.). 3025 k is probably 1258 e and 2944 k is probably 1177 e.
8. 4-Chloro-1-phenylbutyne-1 $\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)$. --Carbon tetrachloride added; for previous data, see I. ${ }^{2}$
$\Delta \nu=520(4)$ and $535(4) .9 ; 624(3) .9 ; 646(3)$ and $665(4)$.7; $700(3) .9 ; 902^{*}(2) .6 ; 968^{*}(2) ; 1000(6) .3 ; 1023^{*}(3)<.7$; $1153^{*}(3)$ and $1181(3) .7 ; 1244(5) .9 ; 1263(6) .5 ; 1424(3) .8$; $1447(4) .7 ; 1491(4) .8 ; 1603(9) .7 ; 2221(10)$ and $2246(10) .6 ;$ $2918^{*}(3 \mathrm{~b}) .5 ; 2959^{*}(2) ; 2979^{*}(2) ; 3063(6) .5$.

The frequency 987 , previously reported, was not found in the present study.
9. 4-Phenyl-3-butynol-1 ($\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$.-Carbon tetrachloride added; for previous data, see $I .^{2}$
$\Delta \nu=386(2) .9 ; \quad 528(3 \mathrm{~b}) .9 ; \quad 936(2)<.7 ; \quad 980(2)<.9 ;$ $1000(7) .3 ; 1162(3) .9 ; 1181(3) .6 ; 1241(5)$ and $1259(5) .5$; $1432(3)$ and $1440(3) .7 ; 1602(9) .8 ; 2214(4)$ and $2233(10) .5$; $2943^{*}(3)$ and $2987^{*}(3) .5 ; 3063^{*}(6) .6$.
10. 5-Chloro-1-phenylpentyne-1 $\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{C} \equiv \mathrm{CCH}_{2}\right.$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$).-Carbon tetrachloride added; for previous clata, see I. ${ }^{2}$
$\Delta \nu=373(3)$ and $408(1) .7 ; 521(3) .7 ; 625(3) .7 ; 654(4) .7 ;$ $693(3) .7 ; \quad 1000(7) .2 ; \quad 1154(3) .9 ; \quad 1177(3) .6 ; 1258(7) .5$; $1435(4) .7 ; 1489(3) .7 ; 1600(8) .7 ; 2220(10)$ and $2236(10) .6$; $2837^{*}(1) .8 ; 2913^{*}(4) .4 ; 2956(3) .7 ; 3063(6) .5$.
11. 1,3-Diphenylpropyne $\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{C}_{8} \mathrm{H}_{5}\right)$.-Synthesized by action of benzyl p-toluenesulfonate (2 noles) upon phetrylacetylenemagnesium bromide (1 nole) ${ }^{14}$; b. p. $135-145^{\circ}$ ($2-3 \mathrm{~mm}$.) (probably somewhat high due to superheating). Not distilled in column. Previous data, none.
$\Delta \nu= \pm 209(\overline{0}) .8 ; 279(1 \mathrm{~b}) ; 327(1 \mathrm{~b}) ; \pm 379(\overline{5}) ; 488(1) ;$ $513(1) ; 528(4)<.9 ; 602(4)$ and $622(5) .9 ; 712(1 \mathrm{~b}) ; 757(3)<$ $.6 ; 797(4) .9 ; 813(3) ; 840(1) ; 850(1) ; 910(1 b) ; 947(1)$; $981(8) .2 ; \quad 1005(8) .1 ; \quad 1032(4) .6 ; \quad 1156(4) .9 ; \quad 1181(6) .6$; 1249(8b). 5 ; $1287(1 \mathrm{~b}) ; 1328(1)$; $1422(3)$ and $144 \overline{5}(2)<.9$; $1493(5) .7 ; 1601(9) .7 ; 2212(8) .5 ; 2238(10) .5 ; 2277(1 \mathrm{~b})$; $2317(1) ; 2435(1) ; 2558(1): 2817(1) ; 2883(5)$ and $2898(3) .5$; 3065(8b).5; [3202(1)].
12. 1-Phenyl-1-butynol-3 $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCHOHCH}_{8}\right)$.-Synthesized by action of acetaldehyde upon phenylacetyl-

[^2]enemagnesium bromide, b. p. 123° (9 mm .); for previous data, see Gredy. ${ }^{15}$
$\Delta \nu=174(4 \mathrm{~b})$ and $189(4) .8 ; 260(1) ; 298(1) ; 349(1)$; $360(3) .9$; $433(1)$; $524(1)$; $546(4) .8 ; ~ 582(2) .9$; $621(2) .9$; $707(1 \mathrm{~b}) .9 ; 756(2) .9 ; 850(1) ; 935(5) .4 ; 1001(8) .3 ; 1024(1)$; 1077(1); $1112(2 \mathrm{~b})<.6$; $1158(4) .6$; 1175(4). 6 ; $1237(1)$; $1255(7) .4 ; 1276(1) ; 1323(1) ; 1385(1) ; 1445(2) .7 ; 1491(3) .7$; 1599(9).7; 2198(4).7; 2233(10).6; 2870(2b).5; 2936(3b).4; 2985(2b).7; 3062(5).6.
Gredy's 463 e is probably 2233 k .489 e was not observed in the present study. 1485 e may be a misprint for 1445 c.

A graphical presentation of those lines for which definite depolarization factors were obtained is given in Fig. 1. The broad lines in the figure correspond to cases in which two lines were not clearly separated on the polarization film. The depolarization factor, multiplied by 10 in order to simplify the diagram, is written near the line to which it corresponds. The height of the line is proportional to its intensity.

Discussion of Results

The data clearly indicate that in the seven cases where it was possible to distinguish two lines on the polarization film in the $2200 \mathrm{~cm} .^{-1}$ region, they were both depolarized to the same degree, within experimental error. Since symmetrical vibrations are in general strongly polarized, asymmetrical vibrations strongly depolarized, it is thus impossible to account for the lines observed in the present study by supposing that they correspond one to a symmetrical, the other to an asymmetrical, vibration, as Glockler and Davis ${ }^{6}$ state to be the case for dimethylacetylene.

The two molecular forms proposed by Gredy ${ }^{-3}$ to account for the splitting are $\mathrm{RC} \equiv \mathrm{CR}^{\prime}$ and R
$\mathrm{R}^{\prime}>\mathrm{C}^{+} \equiv \mathrm{C}$
. The presence of any appreciable portion of the latter compound seems to be ruled out, on a purely physical basis, however, by the extremely small dipole moments obtained for many symmetrical disubstituted acetylenes, such as diphenyl-, di- n-butyl-, and di- n-amylacetylene. Wenzke and Allard ${ }^{16}$ conclude that the simplest structure consistent with zero moment is $\mathrm{RC} \equiv \mathrm{CR}^{\prime}$ and state that "the presence of an appreciable portion of the acetylidene compound is obviated." Furthermore, the acetylidene form is very difficult to justify on the basis of the facts of organic chemistry.

In regard to Badger's suggestion that the split-
(15) B. Gredy, Ann. chin., [11] 4, 5 (1935).
(16) H. H. Wenzke and R. P. Allard, This Journal, 56, 859 (1934).

Fig. 1.-Raman spectra of compounds of the type $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CR}$.
ting is due to a Fermi resonance interaction, it may be noted that there occurs in the present results no frequency whose first overtone would lie in the $2200 \mathrm{~cm} .^{-1}$ region. This is in agreement with Badger's prediction that the frequency near $1100 \mathrm{~cm} .^{-1}$ would not be active in the Raman effect. There is, however, a frequency at $756 \mathrm{~cm} .^{-1}$ whose second overtone falls at approximately the same frequency as the mean of the two lines near $2200 \mathrm{~cm} .^{-1}$. The extent of the agreement for the various compounds is indicated in Table I. It

Table I
Frequency Relations in Acetylenes of Type $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CR}$

R	"Triple bond" frequencies		Mean	Second overtone
CH_{3}	2214	2254	2234	2274
$\mathrm{CH}_{2} \mathrm{Cl}$	2222	2263	2243	2268
$\mathrm{CH}_{2} \mathrm{Br}$	2226	2265	2246	2271
$\mathrm{CH}_{2} \mathrm{OH}$	2202	2242	2222	2268
$\mathrm{CH}_{2} \mathrm{CH}_{8}$	2206	2238	2222	2271
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	2204	2233	2218	2262
$\mathrm{CH}_{2} \mathrm{CH}_{6} \mathrm{H}_{5}$	2212	2238	2225	2271
CHOHCH_{3}	2198	2233	2215	2268

will be noticed that the frequency of the overtone is somewhat greater than the mean of the two frequencies in each case and although the 756 $\mathrm{cm} .^{-1}$ frequency appears with remarkable constancy in the spectra of derivatives of phenylacetylene, it has not been observed with similar constancy in the spectra of other disubstituted
acetylenes as would need be the case if it is to provide a universal cause for the splitting in acetylenic compounds. The investigation of Badger's hypothesis is being continued by studies in both Raman and infrared absorption spectra. ${ }^{17}$

Acknowledgment.-It is a pleasure to acknowledge grants in aid of this research program by the American Association for the Advancement of Science, Sigma Xi, and the Virginia Academy of Science.

Summary

1. Raman frequencies and depolarization factors are reported for twelve acetylenic compounds of the type $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CR}$, where R is $\mathrm{H}, \mathrm{Cl}, \mathrm{CH}_{3}$, $\mathrm{C}_{2} \mathrm{H}_{5}, \quad \mathrm{CH}_{2} \mathrm{OH}, \quad \mathrm{CH}_{2} \mathrm{Cl}, \quad \mathrm{CH}_{2} \mathrm{Br}, \quad \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{CHOHCH}_{3}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$, and $\mathrm{CH}_{2} \mathrm{CH}_{2}-$ $\mathrm{CH}_{2} \mathrm{Cl}$.
2. The two lines near $2200 \mathrm{~cm} .^{-1}$ were found to have the same depolarization factors, thus indicating that one frequency cannot correspond to a symmetrical, the other to an asymmetrical, vibration as Glockler and Davis have stated to be the case for dimethylacetylene.
Chicago, Illinois Received September 25, 1939
[^3]
[^0]: (5) R. M. Badger, J. Chem. Phys., 5, 178 (1937).
 (6) G. Glockler and H. W. Davis, ibid., 2, 881 (1934).

[^1]: (9) '"Org. Syntheses," Coll. Vol. I, 1932, p. 428.
 (10) M. Bourguel, Compt. rend., 195, 311 (1932).
 (11) M. Bourguel and P. Daure, Bull. soc. chim., 47, 1349 (1930).
 (12) B. Gredy, Compt. rend., 196, 1119 (1933).

[^2]: (13) 468 e in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}=\mathrm{CCH}_{2} \mathrm{CH}_{3} \mathrm{CH}_{3}$, measured by Gredy, is also probaibly 2238 k .
 (14) J. R. Johnson, A. M. Schwartz and T. I. Jacobs, This Journal. 60, 1885 (1938).

[^3]: (17) In_{n} a recent paper on the $\mathrm{Raman}_{\text {and }}$ infrared absorption spectra of dimethylacetylene, Crawford [J. Chem. Phys., 7, 555-562 (1939)] reports a weak frequency at $1126 \mathrm{~cm} .^{-1}$ in the infrared spectrum which he regards as the fundamental whose first overtone interacts with the fundamental near $2270 \mathrm{~cm} .^{-1}$ to produce the doublet 2233, 2310 observed in the Raman spectrum. In this case, the frequency of the overtone is less than the mean of the doublet, rather than greater as in the compounds discussed above.

